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Supplementary Note 

A. Short-term thermal tolerance studies 

There is a vast body of literature on the thermal tolerance of fish that cannot be easily 

covered in a limited space. We therefore focus on a part the literature that are most relevant 

to our study.  

There are at least three different ways in the literature to measure thermal tolerance of 

organisms, namely CT (Critical Thermal), CL (Chronic Lethal), and LT (Lethal 

Temperature) methods1,2.  The observed thermal limits depend on the method as well as 

exposure time and acclimation temperature1,2.  CT and CL are dynamic methods, where 

environmental temperature is changed at a constant rate until the subject organism loses 

equilibrium or dies.  This rate is high in CT (e.g., 0.1 to 1.0 °C/min) and low in CL (e.g., 

1 °C/day to 3 °C/month)3.  It is known that CTM (CT Maximum) is higher than CLM (CL 

Maximum) because organisms can tolerate short-term exposure to heat better than long-

term exposure3.  LT is a static method, where the subject organism is left under a constant 

temperature for a preset time span and then usually returned to its normal temperature once 

the set time period is past and its fate (recovery or death) is observed4.  Depending on 

exposure time, LT50 (LT at which 50% of the sample survive) may differ greatly5-7, as in 

the dynamic methods.  For example, Bull Trout (Salvelinus confluentus) survived 23.5 °C 

over 7 days but 20.5 °C for 60 days7. 

The difference between short- and long-term heat exposures is substantial, usually 

amounting to 4 to 5 °C of average difference in the maximum temperature tolerance1,5.  

Given the context of this study, we are more interested in LT and CL values with long 



exposure time than CT values, although CT values are more abundant in the literature given 

its relative ease of measurement1,8-15. Between LT and CL values, the former is preferable 

given the constancy of temperature. 

 

B. Thermal tolerance in invertebrates 

It is worthwhile briefly discussing the long-term heat tolerance of marine 

invertebrates. A study of 36 tropical invertebrates spanning seven phyla found the 

gastropod Echinolittorina malaccana to have the highest long-term heat tolerance, dying 

after ~5 weeks of exposure to slowly rising temperatures up to 42 °C16: other species died 

before five weeks. Note, however, that these temperatures are for death points, whereas 

gastropods first lose normal behavior and then fall into heat coma long before thermal 

death17. It was found that loss of normal behavior and heat coma occurred at ~13 °C and 

~6 °C lower than thermal death in 11 species of intertidal mollusks from the UK17.  The 

highest tolerance of 46.3 °C (~2hr of exposure) was found in Melarhaphe neritoides, but it 

lost normal behavior at 34 °C and fell into heat coma at 38 °C.  It is these lower values that 

seem most relevant to our study.  Under natural conditions, these gastropods experience the 

highest temperatures only when exposed outside water during the day, and they benefit 

from cooling during the night that allows physiological recovery. Note that hydrothermal 

vent polychaetes also live at an average temperature of 30 to 35 °C18, although they survive 

short-term exposures (~12 hrs.) of up to 45 °C19. Overall, long-term heat tolerance by 

actinopterygian fishes and invertebrates seem to be similar. Then, paleotemperature data 

from molluscan fossils probably need to be screen using the same standard proposed for 



vertebrate fossils in the present paper. However, detailed investigation of thermal tolerance 

by the broader metazoans is beyond the scope of the present investigation. 
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Supplementary Figure S1. Same as Fig. 2 but with a metabolic slope of 2/3. See Fig. 2 

caption for details. 

  



 

Supplementary Figure S2. Same as Fig. 2 and Supplementary Fig. S1 but with maximum 

values of egg diameter and water temperature for empirical data. The combination of 

maximum egg diameter and temperature is unrealistic given that eggs laid at the maximum 

temperature are expected to be minimally small. Therefore, this plot is only given to 



facilitate a comparison. A, B, saltwater; C, D, non-salt water. A and C are based on a 

metabolic slope of 3/4, while B and D assumes a slope of 2/3. 

 

  



 

 

Supplementary Figure S3. Same as Supplementary Fig. S2 but with 50% lethal temperature 

ranges listed in Supplementary Data. See Supplementary Data for species names. 


